Multivalent Adhesion Molecule 7 Clusters Act as Signaling Platform for Host Cellular GTPase Activation and Facilitate Epithelial Barrier Dysfunction
نویسندگان
چکیده
Vibrio parahaemolyticus is an emerging bacterial pathogen which colonizes the gastrointestinal tract and can cause severe enteritis and bacteraemia. During infection, V. parahaemolyticus primarily attaches to the small intestine, where it causes extensive tissue damage and compromises epithelial barrier integrity. We have previously described that Multivalent Adhesion Molecule (MAM) 7 contributes to initial attachment of V. parahaemolyticus to epithelial cells. Here we show that the bacterial adhesin, through multivalent interactions between surface-induced adhesin clusters and phosphatidic acid lipids in the host cell membrane, induces activation of the small GTPase RhoA and actin rearrangements in host cells. In infection studies with V. parahaemolyticus we further demonstrate that adhesin-triggered activation of the ROCK/LIMK signaling axis is sufficient to redistribute tight junction proteins, leading to a loss of epithelial barrier function. Taken together, these findings show an unprecedented mechanism by which an adhesin acts as assembly platform for a host cellular signaling pathway, which ultimately facilitates breaching of the epithelial barrier by a bacterial pathogen.
منابع مشابه
Dual function of a bacterial protein as an adhesin and extracellular effector of host GTPase signaling
Bacterial pathogens often target conserved cellular mechanisms within their hosts to rewire signaling pathways and facilitate infection. Rho GTPases are important nodes within eukaryotic signaling networks and thus constitute a common target of pathogen-mediated manipulation. A diverse array of microbial mechanisms exists to interfere with Rho GTPase signaling. While targeting of GTPases by sec...
متن کاملPathogenic interactions between Helicobacter pylori adhesion protein HopQ and human cell surface adhesion molecules CEACAMs in gastric epithelial cells
Objective(s): The present paper aims to review the studies describing the interactions between HopQ and CEACAMs along with possible mechanisms responsible for pathogenicity of Helicobacter pylori.Materials and Methods: The literature was searched on “PubMed” using different key words including Helicobacter pylori, CEACAM and gastric.<br ...
متن کاملJAM-A and aPKC
Cell-cell adhesion plays a critical role in the formation of barrier-forming epithelia. The molecules which mediate cell-cell adhesion frequently act as signaling molecules by recruiting and/or assembling cytoplasmic protein complexes. Junctional Adhesion Molecule (JAM)-A interacts with the cell polarity protein PAR-3, a member of the PAR-3-aPKC-PAR-6 complex, which regulates the formation of c...
متن کامل3-Sulfogalactosyl-dependent adhesion of Escherichia coli HS multivalent adhesion molecule is attenuated by sulfatase activity
Bacterial adhesion to host receptors is an early and essential step in bacterial colonization, and the nature of adhesin-receptor interactions determines bacterial localization and thus the outcome of these interactions. Here, we determined the host receptors for the multivalent adhesion molecule (MAM) from the gut commensal Escherichia coli HS (MAMHS), which contains an array of seven mammalia...
متن کاملMajor Host Factors Involved in Epithelial Cell Invasion of Campylobacter jejuni: Role of Fibronectin, Integrin Beta1, FAK, Tiam-1, and DOCK180 in Activating Rho GTPase Rac1
Host cell entry by the food-borne pathogen Campylobacter jejuni has been reported as one of the primary reasons of tissue damage in infected humans, however, molecular invasion mechanisms and cellular factors involved in this process are widely unclear. Here we used knockout cell lines derived from fibronectin(-/-), integrin beta1(-/-), and focal adhesion kinase (FAK)(-/-) deficient mice and co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014